|
课程特点:
1. 本课程的讲授重心是从数学层面了解并把握推导典范的机械进修算法,从历史到细节深入领会机械进修的根基思惟和各类算法的具体思绪与方式。
2. 强化数学、几率论、数理统计的根本常识,夯实机械进修的根本必备常识。
3. 本课程将供给松散的数学推导进程文档,帮助学员更好地把握算法推导(口试必备)
4. 课程中讲设备随堂考试环节,帮助学员在课中稳固和了解重要常识点。
5. 课程将供给学员经过教员经心整理的配套进修材料和典范论文,在课程的分歧阶段给学员用来温习和进修。
课程纲领:
第一课:机械进修的数学根本
1. 机械进修的数学根本
a. 函数与数据的泛化
b. 推理与归纳 (Deduction and Induction)
2. 线性代数(Linear Algebra)
a. 向量与矩阵 (Vector and Matrix)
b. 特征值与特征向量
c. 向量与高维空间
d. 特征向量(Feature Vector)
3. 几率与统计(Probability and Statistics)
a. 条件几率与典范题目 (Conditional Probability)
b. 边沿几率 (Marginal Probability)
4. 作业/理论: 玉帛题目标几率计较法式
第二课:机械进修的数学根本
1. 统计推理(Statistical Inference)
a. 贝叶斯道理与推理 (Bayesian Theorem)
b. 极大似然估量 (Maximum Likelihood)
c. 主观几率(Subjective Probability)
d. 最大后延几率(MAP)
2. 随机变量(Random Variable)
a. 自力与相关 (Independence)
b. 均值与方差 (Mean and Variance)
c. 协方差 (Co-Variance)
3. 几率散布(Probability Distributions)
4. 中心极限制理(Central Limit Theorem)
5. 作业/理论: 几率散布采样与分歧随机变量之间协方差计较
第三课:机械进修的数学根本
1. 梯度下降(Gradient Descent)
a. 导数与梯度(Derivative and Gradient)
b. 随机梯度下降(SGD)
c. 牛顿方式(Newton's Method)
2. 凸函数(Convex Function)
a. Jensen不等式(Jensen's Inequality)
b. 拉格朗日乘子(Lagrange Multiplier)
3. 作业/理论: 操纵牛顿方式求解给定的方程
第四课:机械进修的哲学(Philosophy of ML)
1. 算法的科学(Science of Algorithms)
a. 输入与输出的神话(Mystery of I/O)
b. 奥卡姆剃刀(Occam’s Razor)
2. 维数的诅咒(Curse of Dimensionality)
a. 高维的多少特征 (Geometric Properity )
b. 高维空间流形(High-dimensional Manifold)
3. 机械进修与野生智能(Machine learning and AI)
4. 机械进修的范式(Paradigms of ML)
第五课:典范机械进修模子(Classical ML Models)
1. 样本进修(Case-Based Reasoning)
a. K-近邻(K-Nearest Neighbors)
b. K-近邻猜测(KNN for Prediction)
c. 间隔与测度(Distance and Metric)
2. 朴实贝叶斯(Na?ve Bayes Classifier)
a. 条件自力(Conditional Independence)
b. 分类(Naive Bayes for Classification)
3. 作业/理论:渣滓邮件分类的案例
第六课:典范机械进修模子(Classical ML Models)
1. 决议树(Decision Tree Learning)
a. 信息论与几率
b. 信息熵(Information Entropy)
c. ID3, CART算法
2. 决议树剪枝(Pruning)
3. 软决议树(Soft Decision Tree)
4. 决议树与法则(DT and Rule Learning)
5. 作业/理论:决议树分类尝试
第七课:典范机械进修模子(Classical ML Models)
1. 集成进修(Ensemble learning)
a. Bagging and Boosting
b. AdaBoost
c. 误差分化(Bias-Variance Decomposition)
d. 随机森林(Boosting and Random Forest)
2. 模子评价(Model Evaluation)
a. 穿插考证(Cross-ValIDAtion)
b. ROC (Receiver Operating Characteristics)
c. Cost-Sensitive Learning
3. 作业/理论:随机森林与决议树分类尝试的比力
第八课:线性模子(Linear Models)
1. 线性模子(Linear Models)
a. 线性拟合(Linear Regression)
2. 最小二乘法(LMS)
b. 线性分类器(Linear Classifier)
3. 感知器(Perceptron)
4. 对数几率回归(Logistic Regression)
5. 线性模子的几率诠释 (Probabilistic Interpretation)
6. 作业/理论:对数几率回归的文本感情分析中利用
第九课:线性模子(Linear Models)
1. 线性辨别分析 (Linear Discrimination Analysis)
2. 约束线性模子 (Linear Model with Regularization)
a. LASSO
b. Ridge Regression
3. 稀疏暗示与字典进修
a. Sparse Representation & Coding
b. Dictionary Learning
第十课:核方式(Kernel Methods)
1. 支持向量机SVM(Support Vector Machines)
a. VC-维(VC-Dimension)
b. 最大间距(Maximum Margin)
c. 支持向量(Support Vectors)
2. 作业/理论:SVM分歧核函数在现实分类中比力
第十一课:核方式(Kernel Methods)
1. 对偶拉格朗日乘子
2. KKT条件(KKT Conditions)
3. Support Vector Regression (SVR)
4. 核方式(Kernel Methods)
第十二课:统计进修(Statistical Learning)
1. 辨别模子与天生模子
a. 隐含变量(Latent Variable)
2. 夹杂模子(Mixture Model)
a. 三枚硬币题目(3-Coin Problem)
b. 高斯夹杂模子(Gaussian Mixture Model)
3. EM算法(Expectation Maximization)
a. 期望最大(Expectation Maximization)
b. 夹杂模子的EM算法(EM for Mixture Models)
c. Jensen 不等式 (Jensen's Inequality)
d. EM算法推导与性能 (EM Algorithm)
第十三课:统计进修(Statistical Learning)
1. 隐马可夫模子(Hidden Markov Models)
a. 静态夹杂模子(Dynamic Mixture Model)
b. 维特比算法(Viterbi Algorithm)
c. 算法推导 (Algorithm)
2. 条件随机场(Conditional Random Field)
第十四课:统计进修(Statistical Learning)
1. 条理图模子(Hierarchical Bayesian Model)
a. 几率图模子 (Graphical Model)
b. 从隐含语义模子到p-LSA (From LSA to P-LSA)
c. Dirichlet 散布与特点(Dirichlet Distribution)
d. 对偶散布(Conjugate Distribution)
第十五课:统计进修(Statistical Learning)
1. 主题模子(Topic Model – LDA)
a. Latent Dirichlet Allocation
b. 文天职类(LDA for Text Classification)
2. 中文主题模子(Topic Modeling for Chinese)
3. 其他主题模子(Other Topic Variables)
第十六课:无监视进修(Unsupervised Learning)
1. K-均值算法(K-Means)
a. 核密度估量(Kernel Density Estimation)
b. 条理聚类(Hierarchical Clustering)
2. 蒙特卡洛(Monte Carlo)
a. 蒙特卡洛树搜索(Monte Carol Tree Search)
b. MCMC(Markov Chain Monte Carlo)
c. Gibbs Sampling
第十七课:流形进修(Manifold Learning)
1. 主成份分析(PCA)
a. PCA and ICA
2. 低维嵌入(Low-Dimensional Embedding)
a. 等怀抱映照(Isomap)
b. 部分线性嵌入(Locally Linear Embedding)
第十八课:概念进修(Concept Learning)
1. 概念进修(Concept Learning)
a. 典范概念进修
b. One-Short概念进修
2. 高斯进程进修(Gaussian Process for ML)
c. Dirichlet Process
第十九课:强化进修(Reinforcement Learning)
1. 夸奖与赏罚(Reward and Penalty)
a. 状态空间 (State-Space Model)
b. Q-进修算法 (Q-Learning)
2. 途径计划 (Path Planning)
3. 游戏野生智能 (Game AI)
4. 作业/理论:小鸟飞翔游戏的自动进修算法
第二十课:神经收集
1. 多层神经收集
a. 非线性映照(Nonlinear Mapping)
b. 反向传布(Back-propagation)
2. 自动编码器(Auto-Encoder)
[color=]下载地址
:
|
|
|